首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   5365篇
  免费   511篇
  国内免费   2篇
  2023年   39篇
  2022年   21篇
  2021年   188篇
  2020年   103篇
  2019年   157篇
  2018年   192篇
  2017年   145篇
  2016年   230篇
  2015年   406篇
  2014年   359篇
  2013年   382篇
  2012年   525篇
  2011年   487篇
  2010年   293篇
  2009年   210篇
  2008年   328篇
  2007年   329篇
  2006年   293篇
  2005年   258篇
  2004年   226篇
  2003年   223篇
  2002年   184篇
  2001年   30篇
  2000年   25篇
  1999年   40篇
  1998年   45篇
  1997年   19篇
  1996年   10篇
  1995年   16篇
  1994年   13篇
  1993年   8篇
  1992年   8篇
  1991年   6篇
  1990年   9篇
  1988年   4篇
  1986年   5篇
  1985年   3篇
  1982年   3篇
  1981年   5篇
  1980年   5篇
  1977年   4篇
  1973年   5篇
  1971年   2篇
  1970年   2篇
  1969年   2篇
  1968年   2篇
  1967年   4篇
  1963年   2篇
  1962年   2篇
  1957年   2篇
排序方式: 共有5878条查询结果,搜索用时 15 毫秒
991.
992.
993.
The innate immune system allows plants to respond to potential pathogens in an appropriate manner while minimizing damage and energy costs. Photosynthesis provides a sustained energy supply and, therefore, has to be integrated into the defense against pathogens. Although changes in photosynthetic activity during infection have been described, a detailed and conclusive characterization is lacking. Here, we addressed whether activation of early defense responses by pathogen-associated molecular patterns (PAMPs) triggers changes in photosynthesis. Using proteomics and chlorophyll fluorescence measurements, we show that activation of defense by PAMPs leads to a rapid decrease in nonphotochemical quenching (NPQ). Conversely, NPQ also influences several responses of PAMP-triggered immunity. In a mutant impaired in NPQ, apoplastic reactive oxygen species production is enhanced and defense gene expression is differentially affected. Although induction of the early defense markers WRKY22 and WRKY29 is enhanced, induction of the late markers PR1 and PR5 is completely abolished. We propose that regulation of NPQ is an intrinsic component of the plant's defense program.  相似文献   
994.
The blood–brain barrier (BBB) is a highly specialized system that controls the exchanges between the blood and the central nervous system (CNS). This barrier shields the CNS from toxic substances in the blood and provides nutrients to CNS, thus playing an essential role in the maintenance of homeostasis. The anatomical basis of the BBB is formed by the endothelial cells of brain microvasculature, with elaborated tight and adherens junctions, which together with pericytes, the basement membrane, and astrocytes, as well as neurons, microglia and oligodendrocytes form the neurovascular unit. The interaction between all these components guarantees a proper environment for neural function and a restricted permeability and transport. Pericytes were initially reported by Rouget in 1873 and since then they have been recognized as an important component of the BBB, despite the difficulty of their identification. Diverse functions have been assigned to pericytes, including a role in BBB properties, hemostasis, and angiogenesis, as well as a contractile, immune, and phagocytic function. These cells are also seen like multipotent cells and so with a great potential for therapy. Here, we review the neurovascular unit composition and the interplay between the diverse components, addressing pericytes with a particular detail.  相似文献   
995.
Guanylate-binding proteins (GBPs) belong to the family of large GTPases that are induced in response to interferons. GBPs contain an N-terminal globular GTPase domain and a C-terminal α-helical regulatory domain that are connected by a short middle domain. Antiviral activity against vesicular stomatitis virus and encephalomyocarditis virus has been shown for hGBP-1; however, no anti-influenza virus properties for GBPs have been described to date. Here we show that hGBP-1 and hGBP-3 possess anti-influenza viral activity. Furthermore, we have identified a novel splice variant of hGBP-3, named hGBP-3ΔC, with a largely modified C-terminal α-helical domain. While all three GBP isoforms were up-regulated on influenza virus infection, hGBP-3ΔC showed the most prominent antiviral activity in epithelial cells. Mutational analysis of hGBPs revealed that the globular domain is the principal antiviral effector domain, and GTP-binding, but not hydrolysis, is necessary for antiviral action. Furthermore, we showed that hGBP-3ΔC strongly represses the activity of the viral polymerase complex, which results in decreased synthesis of viral vRNA, cRNA, mRNA, and viral proteins, as well.  相似文献   
996.
The combination of Pt nanoparticles and graphene was more effective in enhancing biosensing than either nanomaterial alone according to previous reports. Based on the structural similarities between water soluble graphene oxide (GrO(x)) and graphene, we report the fabrication of an aqueous media based GrO(x)/Pt-black nanocomposite for biosensing enhancement. In this approach GrO(x) acted as a nanoscale molecular template for the electrodeposition of Pt-black, an amorphously nanopatterned isoform of platinum metal. Scanning electron microscopy (SEM) images and energy-dispersive X-ray spectroscopy (EDS) showed that Pt-black was growing along GrO(x). The effective surface area and electrocatalytic activity towards H(2)O(2) oxidation of GrO(x)/Pt-black microelectrodes were significantly higher than for Pt-black microelectrodes. When used to prepare a bio-nanocomposite based on protein functionalization with the enzyme glucose oxidase (GOx), the GrO(x)/Pt-black microbiosensors exhibited improved sensitivity over the Pt-black microbiosensors. This suggested that the GrO(x)/Pt-black nanocomposite facilitated an increase in electron transfer, and/or minimized mass transport limitations as compared to Pt-black used alone. Glucose microbiosensors based on GrO(x)/Pt-black exhibited high sensitivity (465.9±48.0nA/mM), a low detection limit of 1μM, a linear response range of 1μM-2mM, and response time of ~4s. Additionally the sensor was stable and highly selective over potential interferents.  相似文献   
997.
Recent studies have described a new tropical lowland forest type in the Guianas, the tropical lowland cloud forest. It is characterized by an enriched epiphytic species diversity particularly for bryophytes compared to common lowland rainforest, and is facilitated by frequent early morning fog events in valley locations. While the increase in epiphytic species diversity in lowland cloud forests has been documented, uncertainties remain as to (1) how this small scale variation in water supply is shaping the functional diversity of epiphytic components in lowland forests, and (2) whether information on functional group composition of epiphytes might aid in discerning these cloud forests from the common lowland rainforest. We compare the distribution of functional groups of epiphytes across height zones in lowland cloud forest and lowland rain forest of French Guiana in terms of biomass, cover as well as the composition of bryophyte life-forms. Both forests differed in functional composition of epiphytes in the canopy, in particular in the mid and outer canopy, with the cloud forest having a higher biomass and cover of bryophytes and vascular epiphytes as well as a richer bryophyte life-form composition. Bryophyte life-forms characteristic for cloud forests such as tail, weft and pendants were almost lacking in the canopies of common rain forest whereas they were frequent in lowland cloud forests. We suggest that ground-based evaluation of bryophyte life-form composition is a straightforward approach for identifying lowland cloud forest areas for conservation, which represent biodiversity hotspots in tropical lowland forests.  相似文献   
998.
Carotenoid cleavage, catalyzed by the 9-cis-epoxycarotenoid dioxygenase (NCED) constitutes a key step in the regulation of ABA biosynthesis. In Arabidopsis, this enzyme is encoded by five genes. NCED3 has been shown to play a major role in the regulation of ABA synthesis in response to water deficit, whereas NCED6 and NCED9 have been shown to be essential for the ABA production in the embryo and endosperm that imposes dormancy. Reporter gene analysis was carried out to determine the spatiotemporal pattern of NCED5 and NCED9 gene expression. GUS activity from the NCED5 promoter was detected in both the embryo and endosperm of developing seeds with maximal staining after mid-development. NCED9 expression was found at early stages in the testa outer integument layer 1, and after mid-development in epidermal cells of the embryo, but not in the endosperm. In accordance with its temporal- and tissue-specific expression, the phenotypic analysis of nced5 nced6 nced9 triple mutant showed the involvement of the NCED5 gene, together with NCED6 and NCED9, in the induction of seed dormancy. In contrast to nced6 and nced9, however, nced5 mutation did not affect the gibberellin required for germination. In vegetative tissues, combining nced5 and nced3 mutations reduced vegetative growth, increased water loss upon dehydration, and decreased ABA levels under both normal and stressed conditions, as compared with nced3. NCED5 thus contributes, together with NCED3, to ABA production affecting plant growth and water stress tolerance.  相似文献   
999.
The loss of glomerular podocytes is a key event in the progression of chronic kidney disease resulting in proteinuria and declining function. Podocytes are slow cycling cells that are considered terminally differentiated. Here we provide the first report of the directed differentiation of induced pluripotent stem (iPS) cells to generate kidney cells with podocyte features. The iPS-derived podocytes share a morphological phenotype analogous with cultured human podocytes. Following 10 days of directed differentiation, iPS podocytes had an up-regulated expression of mRNA and protein localization for podocyte markers including synaptopodin, nephrin and Wilm’s tumour protein (WT1), combined with a down-regulation of the stem cell marker OCT3/4. In contrast to human podocytes that become quiescent in culture, iPS-derived cells maintain a proliferative capacity suggestive of a more immature phenotype. The transduction of iPS podocytes with fluorescent labeled-talin that were immunostained with podocin showed a cytoplasmic contractile response to angiotensin II (AII). A permeability assay provided functional evidence of albumin uptake in the cytoplasm of iPS podocytes comparable to human podocytes. Moreover, labeled iPS-derived podocytes were found to integrate into reaggregated metanephric kidney explants where they incorporated into developing glomeruli and co-expressed WT1. This study establishes the differentiation of iPS cells to kidney podocytes that will be useful for screening new treatments, understanding podocyte pathogenesis, and offering possibilities for regenerative medicine.  相似文献   
1000.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号